Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(2): e0172296, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28212406

RESUMO

With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs) consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt.) was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0) and myristate (C14:0) were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0), from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production.


Assuntos
Brassicaceae/genética , Brassicaceae/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Triglicerídeos/química , Triglicerídeos/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/deficiência , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Plantas Geneticamente Modificadas , Interferência de RNA , Tioléster Hidrolases/genética , Umbellularia/enzimologia , Umbellularia/genética
2.
Appl Environ Microbiol ; 83(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213537

RESUMO

Thraustochytrium sp. strain ATCC 26185 accumulates a high level of docosahexaenoic acid (DHA), a nutritionally important ω-3 very-long-chain polyunsaturated fatty acid (VLCPUFA) synthesized primarily by polyunsaturated fatty acid (PUFA) synthase, a type I polyketide synthase-like megaenzyme. The PUFA synthase in this species comprises three large subunits, each with multiple catalytic domains. It was hypothesized that among these domains, ketoacylsynthase (KS) domains might be critical for catalyzing the condensation of specific unsaturated acyl-acyl carrier proteins (ACPs) with malonyl-ACP, thereby retaining double bonds in an extended acyl chain. To investigate the functions of these putative KS domains, two segment sequences from subunit A (KS-A) and subunit B (KS-B) of the PUFA synthase were dissected and then expressed as stand-alone enzymes in Escherichia coli The results showed that both KS-A and KS-B domains could complement the defective phenotypes of both E. colifabB and fabF mutants. Overexpression of these domains in wild-type E. coli led to increases in total fatty acid production. KS-B produced a higher ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs), while KS-A could improve the overall production of fatty acids more effectively, particularly for the production of SFAs, implying that KS-A is more comparable to FabF, while KS-B is more similar to FabB in catalytic functions. Successful complementation and functional expression of the embedded KS domains in E. coli are the first step forward in studying the molecular mechanism of the PUFA synthase for the biosynthesis of VLCPUFAs in ThraustochytriumIMPORTANCE Very-long-chain polyunsaturated fatty acids (VLCPUFAs) are important for human health. They can be biosynthesized in either an aerobic pathway or an anaerobic pathway in nature. However, abundant VLCPUFAs in marine microorganisms are primarily synthesized by polyunsaturated fatty acid (PUFA) synthase, a megaenzyme with multiple subunits, each with multiple catalytic domains. Furthermore, the fundamental mechanism for this enzyme to synthesize these fatty acids still remains unknown. This report started with dissecting the embedded KS domains of the PUFA synthase from marine protist Thraustochytrium sp. strain ATCC 26185 and then expressing them in wild-type E. coli and mutants defective in condensation of acyl-ACP with malonyl-ACP. Successful complementation of the mutants and improved fatty acid production in the overexpression experiments indicate that these KS domains can effectively function as stand-alone enzymes in E. coli This result has paved the way for further studying of molecular mechanisms of the PUFA synthase for the biosynthesis of VLCPUFAs.


Assuntos
Escherichia coli/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Estramenópilas/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/deficiência , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Acetiltransferases/deficiência , Acetiltransferases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ácido Graxo Sintase Tipo II/deficiência , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintases/química , Ácido Graxo Sintases/genética , Expressão Gênica , Teste de Complementação Genética , Proteínas Recombinantes/genética , Estramenópilas/genética
3.
Microbiology (Reading) ; 155(Pt 9): 3055-3069, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19460825

RESUMO

The lipopolysaccharide (LPS) of the Gram-negative legume symbiont Rhizobium leguminosarum biovar viciae 3,841 contains several unique modifications, including the addition of a 27-hydroxyoctacosanoic acid (27OHC28 : 0), also termed the very long chain fatty acid (VLCFA), attached at the 2' position of lipid A. A transposon mutant that lacks expression of two putative 3-oxo-acyl [acyl-carrier protein] synthase II genes, fabF1 and fabF2, from the VLCFA biosynthetic cluster, was isolated and characterized. MS indicated that the lipid A of the mutant lacked the VLCFA modification, and sodium deoxycholate (DOC)-PAGE of the LPS indicated further structural alterations. The mutant was characteristically sensitive to several stresses that would be experienced in the soil environment, such as desiccation and osmotic stresses. An increase in the excretion of neutral surface polysaccharides was observed in the mutant. This mutant was also altered in its attachment to solid surfaces, and was non-motile, with most of the mutant cells lacking flagella. Despite the pleiotropic effects of the mutation, these mutants were still able to nodulate legumes and fix atmospheric nitrogen. This report emphasizes that a structurally intact VLCFA-containing lipid A is critical to cellular traits that are important for survival in the rhizosphere.


Assuntos
Biofilmes/crescimento & desenvolvimento , Hidroxiácidos/metabolismo , Lipídeo A/metabolismo , Rhizobium leguminosarum/fisiologia , Tolerância ao Sal , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/deficiência , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Aderência Bacteriana , DNA Bacteriano/genética , Fabaceae/microbiologia , Genes Bacterianos , Hidroxiácidos/química , Lipídeo A/química , Espectrometria de Massas , Fixação de Nitrogênio , Análise de Sequência de Proteína , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...